Mining CosmicGold in the 2020s with Large Scale Structure Surveys

http://spherex.caltech.edu http://wfirst.hls-cosmology.org

SPHEREx Team

WFIRST Cosmology High Latitude Survey Team

DARK ENERGY DRIVES THE EXPANSION RATE...

LSS SURVEYS OF THE NEXT DECADE

- DESI (BAO, RSD)
- LSST (WL, SNe, BAO w/ photo-z, Cl)
- Euclid (WL, BAO, RSD, CI)
- SPHEREX (GC)
- WFIRST (WL, BAO, RSD, SNe, CI)

- CMB (more and more a LSS survey), covered by Julian Borrill, Simone Ferraro, Emmanuel Schaan
- Intensity Mapping experiments, covered by Phil Bull

WFIRST

WFIRST: THE NEXT NASA FLASHSHIP

- Top priority from the 2010 Astrophysics Decadal Survey
- Hubble sized telescope, donated by another government agency
- Hubble power and resolution, 100x the field of view
 - → Hubble quality image over 100x more sky
- Dark energy, exoplanet, and wide-field survey capabilities
- Coronagraph technology to build the "Search for Life" foundation

WFIRST INSTRUMENTS

- Wide-Field Instrument
 - → Imaging & spectroscopy over 1,000s of sq. deg.
 - → Monitoring of SN and micro-lensing fields
 - → 0.7-2.0 µm (imaging), ~1.0-1.93 µm (spec.)
 - → 0.28 deg² FoV (100x JWST FoV)
 - → 18 H4RG detectors (288 Mpixels)
 - → 6 filters imaging, 1 grism, 1 prism
- Coronagraph
 - → Image and spectra of exoplanets from super-Earths to giants
 - → Images of debris disks
 - → 430 970 nm (imaging) & 600 970 nm (IFS spec.)
 - → Final contrast of 10-9 or better
 - → Exoplanet images from 0.1 to 1.0 arcsec
 - → Technology demonstration for future missions to characterize exo-Earths (e.g., LUVOIR and HabEx)

WFIRST

3 SURVEYS, AN EXPERIMENT, AN OBSERVATORY

- Nominal 5 yr mission
- Three Surveys:
 - → ~2 yrs High-Latitude Survey (HLS)
 - Imaging, spectroscopy
 - → ~6 months SNe search
 - → ~1 yr for repeated galactic bulge observations for micro-lensing
- Experiment:
 - → 1 yr for coronograph
- 25% Guest Observer program
- All data public a few days after they are taken

Akeson++19 arXiv:1902.05569 OD++19 arXiv:1804.03628 OD++19 arXiv:1904.01174

SPHEREX

ASTROPHYSICS & HELIOPHYSICS MID-EXPLORERS MISSIONS

https://explorers.gsfc.nasa.gov/

SPHEREX: AN ALL-SKY SPECTRAL SURVEY

Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer

SPHEREx Dataset:

- For <u>every</u> 6.2" pixel over the entire sky:
 - \rightarrow R=35-41 spectra spanning 0.75 µm < λ < 3.82 µm
 - → R=110-130 spectra spanning 3.82 μm < λ < 5.0 μm
- all-sky survey with 96 fine photometric bands

SPHEREX SURVEY DEPTH

Deep survey

All-sky survey

SPHEREX PROVIDES A RICH ALL-SKY SPECTRAL ARCHIVE

All-Sky surveys demonstrated high scientific returns with a lasting data legacy used across astronomy

COBE IRAS GALEX WMAP Planck WISE

OD++16,18

An Innovative Architecture Based on Mature Technologies

Parameter	Value	
Telescope eff. diameter	20 cm	
Field of view	3.5 x 11 deg. ²	
Pixel size	6.2 arcsec	
Wavelength range	0.75 – 5 μm	
Resolving power $\lambda/\Delta\lambda$	35-130	

Pre-Decisional Information For Planning and Discussion Purposes Only

SPHEREX AND INFLATION

- SPHEREx produces a unique 3-D galaxy survey
 - Optimized for large scales to study inflation
 - Two independent tests of non-Gaussianity
- SPHEREx improves non-Gaussianity accuracy by a factor of ~10
 - → Improves $\Delta f_{NL} \sim 5$ accuracy today to $\Delta f_{NL} < 0.5$
- Discriminates between models
 - → Single-field inflation f_{NL} << 1
 - → Multi-field inflation f_{NL} ≥ 1

DE SURVEY COMPLEMENTARITY AT A GLANCE

ca. 06/2019	LSST	WFIRST	Euclid	DESI
Start, duration	2022, 10 yr	~2025, 5 (-10) yr	2022, 6 yr	2019, 5 yr
Cosmo Area (sq. deg.)	14,300 (S+N)	~2,000 (S)	15,000 (S+N)	14,000 (N)
FOV (sq. deg.)	10	0.28	0.53	7.9
Eff. diameter (m.)	6.7	2.2	1.1	3.3
FWHM (arcsec.)	0.81	0.18	0.15 (VIS) 0.3-0.6 (NIR)	
Pixel (arcsec.)	0.2	0.11	0.1 (VIS), 0.3 (NIR)	
Photometric Survey	6 bands (u,g,r,i,z,y)	4 bands (Y,J,H,F184)	4 bands (VIS,Y,J,H)	
Photometric Galaxies (w/ shapes) (#/arcmin²)	~26 in 2 bands (r,i)	~50 in 3 bands (J,H,F184)	~30 in 1 band (VIS)	
Pass / field	~400	6 (2/band)	1	
SN1a	10 ⁵ - 5x10 ⁵ z=0.05-1.1 photometric	2,7x10 ³ -2x10 ⁴ (IM) z=0.15-2.0 Prism spectroscopy		
Spectroscopic Survey		Grism R=550-800 1-1.93 μm	Grism R>~380 1.25-1.85 μm	Fibers R=2000-5500 0.36-0.98 µm
Spectroscopic Galaxies		ELGs z=0.52-1.94 Ha (~20M) z=1.0-2.85 [OIII] (~5M)	ELGs z=0.9-1.8 Ha (~30M)	LRGs+ELGs z=0.6-1.7 (20-30M) QSOs/Lya 1.9 <z<4 (1M)</z<4

WFIRST, EUCLID, AND LSST SENSITIVITIES

SOURCE DENSITIES

Based on CANDLES data

Shoubaneh Hemmati++19

EFFECTIVE VOLUME FOR SPECTRO SURVEYS

$$V_{eff} = \left(\frac{P_{gal}}{P_{gal} + 1/n_{gal}}\right)^2 V_{phys}$$

(k=0.01 h/Mpc)

(k=0.2 h/Mpc)

Mind the different spectral resolution

Stickley++16

THE WHOLE IS GREATER THAN THE SUM OF ITS PARTS

- Multiple cosmological surveys will enable multiple cosmological probes, which will enable a robust physical interpretation
 - → The decade of "multi-probe" analysis

- Multiple surveys will enable important and critical cross-checks
 - → New insights on the nature of DE will be thoroughly cross-validated

- Joint analysis have strong mutual benefits:
 - → Systematics control (see *Elisabeth Krause* talk)
 - → Novel cosmological signals
 - → Already strong cross-survey planning, e.g. on deep fields
- The decade of MOUs!

e.g. Jain++15

LSST AND WFIRST (/EUCLID) - I

- Photometric redshift:
 - → WFIRST does not cover the Balmer/4000A break at low z
 - → WFIRST needs LSST
- Cross-correlations:
 - → WFIRST spectro. survey to calibrate LSST photo-z using clustering-redshift
 - Especially true at $z \ge 1.5$ where the ground-based ELG samples tail off.
 - → WFIRST [OIIII] sample is ideal between 1.02<z<2.85 and 2.55 denser than DESI QSOs at z>1.5
- Shape measurement validation:
 - → WFIRST observations help LSST WL with calibration of the shear estimates
 - → WFIRST PSF correction smaller and well characterized
 - ~nm-level wavefront stability available in space and extensive calibration program planned for detector effects, e.g., cross-talk, reciprocity failure

BLENDING SURVEYS TO DEBLEND SOURCES

WFIRST R

Euclid VIS

LSST r

courtesy of Bomee Lee, 2019 Joint Survey Processing report

WFIRST W BAND LARGE AREA SURVEY

Eifler, Heinrich, Krause, Miyatake, Simet et al., 2019, in prep.

EUCLID/WFIRST/LSST AND SPHEREX

Cosmology:

- →SPHEREx-detected galaxies generally lower-z than Euclid, enabling complementary science
- →SPHEREx galactic extinction map will help photo-z systematics
- →Stacking of faint isolated SPHEREx sources produce representative object SEDs (Padmanabhan++18)
- → Photo-z calibration in deep fields (Ilbert, Salvato 19)
- →SPHEREx ideal for finding QSOs and isolated dusty galaxies

Calibration

- → Direct calibration of Euclid images and spectra on large spatial scales
- → Directly tie all four parts of the Euclid survey to the same spectrophotometric system

THE WHOLE COSMOGOLD IS GREATER THAN THE SUM OF ITS PARTS

- The coming decade is going to be transformative:
 - → Multiple ground-breaking surveys are planned
 - → DESI, LSST, Euclid, SPHEREX, WFIRST
- Multiple cosmological surveys will enable multiple cosmological probes, which will enable a robust physical interpretation
- Multiple surveys will enable important and critical cross-checks
- Very strong mutual benefits in joint analysis and interpretations
- Scientific discoveries are guaranteed.
 - → How fundamental will they be?

